

ATTACHMENT A) NOTICE OF COMPETITION FOR N.2 RESEARCH GRANTS - RIF. D.I.E.T.I. ASS.Ric. 10/2021, D.D.n. 333/2021 - DR 2019/1510 of 23.04.2019.

COMPETITION ID NUMBER	Research headquarters	TITLE OF THE RESEARCH PROGRAM	DESCRIPTION OF THE RESEARCH GRANT PROGRAM	S.S.D.	Disciplinary area	RESPONSIBLE FOR RESEARCH ACTIVITIES	FINANCIAL ORGANISATION	DURATION IN YEARS (1 year =1500 hours)	Gross annual amount net of charges to be paid by the University	Gross annual amount including the charges to be borne by the University and the provision for maternity for n. 1 grant	Date, location and time Publication of the Evaluation of the qualifications	Date of seat and time Test interview
DIETI/ASS.Ric.10/2021_1	Department of Electrical Engineering and Information Technology	Haptic control for remote teleoperation of cooperative aerial manipulators	Inspection operations may use several platforms to cooperatively accomplish a task. These platforms are required to be maneuvered simultaneously by a remote operator. The objectives are listed in the following. (i) Develop a control framework for single user to multi-aerial manipulator mission control. (ii) Assess the effect of time delays on multi-robot collaboration phisically interacting with each other and the environment. (iii) Develop telemanipulation control strategies using multi-modal user information for distributed system coordination by a remote user.	ING-INF/04	Systems and control engineering	Prof. Vincenzo Lippiello	Progetto AEROTRAIN - *AErial RObotic TRAINing for the next generation of European infrastructure and asset maintenance technologies* MARIE_CURIE Programme for Research and Innovation 2014_2020. CUP:E55F21000590006.	3	€. 38.455,20	€. 51.166,56	14.09.2021 at 18.00 (Italian time) WEBSITE D.I.E.T.I.	16.09.2021 at 09.00 (Italian time) TELEMATIC MODE
DIETI/ASS.Ric.10/2021_2	Department of Electrical Engineering and Information Technology	Stabilization and control of aerial manipulators in contact with the environment for on-site measurements	From a theoretical point of view, stability theorems exhibit only local validity and estimators of external disturbances may not be enough standalone, while they must be tailorec on the design of the aerial manipulator itself. A fast reaction to unexpected situations should be guaranteed for reliable measurements. The main objectives are (i) the design and control an aerial manipulator for interaction with the environment for on-site measurements; (ii) the study of aerodynamic hunrdles caused by the proximity of the floating platform with the surrounding environment preventing even simple perching operations; (iii) the development of estimators of unmodelled aerodynamic effects and external disturbances and test them in real life experiments.	ING-INF/04	Systems and control engineering	Dr. Eng. Fabio Ruggiero	Progetto AEROTRAIN - *AErial RObotic TRAINing for the next generation of European infrastructure and asset maintenance technologies* MARIE_CURIE Programme for Research and Innovation 2014_2020. CUP:E55F21000590006.	3	€. 38.455,20	€. 51.166,56	14.09.2021 at 18.00 (Italian time) WEBSITE D.I.E.T.I.	16.09.2021 at 09.00 (Italian time) TELEMATIC MODE

Napoli, 06.08.2021