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1 | INTRODUCTION

Michael V. Basin®® |

Mohammed Chadli*

Abstract

This paper provides a systematic method to design robust tracking controllers
of reference signals with bounded derivatives of order v for uncertain multi-
input multi-output (MIMO) systems with bounded parametric uncertainties,
in particular, of rational multi-affine type, and/or in presence of disturbances
with bounded derivatives of order v. The proposed controllers have state-
feedback structures combined with proportional-integral regulators of order
v (PL). Theoretical tools and systematic methodologies are provided to
effectively design robust controllers for the considered systems, also in case of
additional bounded nonlinearities and/or not directly measurable states.
Applicability and efficiency of the proposed methods are validated through
three examples: the first one is theoretical and useful to validate the proposed
methodology, the second case study presents a metal-cutting problem for an
industrial robot, and the third example deals with a composite robot, such as a
milling machine.

KEYWORDS

Cartesian robots, PI, controller, processes with unmeasurable states, robust tracking method,
systems with additional bounded nonlinearities, uncertain linear time-invariant (LTI) MIMO
systems

remain in effect: (a) the considered classes of systems are
often of particular structure; (b) the considered reference

Numerous industrial systems operate subject to paramet-
ric uncertainties and non-standard references and distur-
bances, which need to be efficiently controlled. For such
systems evolving in an increasingly dynamic and global
society, it is indispensable to design robust controllers
able to track rapidly varying reference signals (i.e., with
larger derivatives) quickly and precisely, despite any
external disturbances. A number of publications on this
topic are available (e.g. [1-7]), including recent ones [8-
20]. However, the following practical limitations still

signals and disturbances almost always have standard
waveforms (polynomial and/or sinusoidal ones); (c) the
controllers are not robust enough and/or do not applica-
ble to systems satisfying more than one specification;
(d) the control inputs are excessive and/or unfeasible in
some cases [1-11, 21-28].

A basic control problem is to force an uncertain pro-
cess or a plant to track with an acceptable precision suffi-
ciently smooth but generic references, e.g., with bounded
v - order derivatives and/or in the presence of generic but
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sufficiently smooth disturbances. This paper provides a
systematic method to design robust tracking controllers
using the majorant systems approach for LTI uncertain
multi-input multi-output (MIMO) systems with bounded
parametric uncertainties, in particular, of rational multi-
affine type, and reference signals and disturbances with
bounded derivatives of order v. The proposed controller
possesses a state-feedback structure combined with a PI,
regulator. Systems with additional bounded nonlinear-
ities and/or not directly measurable states are also
considered.

This development presents a broad generalization of
[29], where the case v = 1 has been considered with more
restrictive uncertainty type and a controller without pro-
portional action. The obtained results also generalize the
results of [30] concerning uncertain MIMO systems, con-
sidering bounded uncertainties of rational multi-affine
type, with an integral controller and observer. The
applied majorant systems approach has already success-
fully used for particular classes of linear and nonlinear
systems (see [29-31]). Another approach to design robust
tracking controllers for relevant classes of nonlinear sys-
tems can be found in [32]. The provided results are par-
ticularly useful for mechatronic systems (e.g., rigid
Cartesian robots, rolling mills, AGVs, conveyor belts,
active suspension systems, printing machines), whose ref-
erence signals and disturbances are represented by non-
standard waveforms (see, e.g., [30, 33, 34]).

Some distinctive features and advantages of the pro-
posed study are: (a) The designed controllers avoid the
derivative action causing realization problems, especially
in the presence of measurement noises; (b) the presence
of realistic uncertainties, which are bounded and, in par-
ticular, of rational multi-affine type; (c) the possibility to
obtain acceptable tracking errors for reference signals
and disturbances represented by generic sufficiently regu-
lar non-standard waveforms.

The paper is organized as follows. In Section 2, the
considered MIMO uncertain systems are introduced, and
the synthesis problems are stated. Section 3 provides the
theoretical background. Section 4 presents the main theo-
rems used to design robust controllers for the considered
systems. Section 5 extends some results obtained in Sec-
tion 4. Section 6 specifies the control design algorithms
based on the presented theoretical background. In Sec-
tion 7, three examples are provided: the first one is given
to illustrate the proposed methodology, the second exam-
ple presents a metal-cutting problem for an industrial
robot, and the third case study considers a composite
robot such as a milling machine, to show practical advan-
tages and effectiveness of the designed controller. Finally,
Section 8 presents conclusions and future developments
to this study.

2 | PRELIMINARIES AND
PROBLEM STATEMENT

The notation is introduced as follows:

[xllp = VXTPx, ||x]| = [|x]l;, = VxTx,Sp, = {x:[[x[l <p}, p20,
Cpp= {X3 ”xHP:P}’CP, »2Cp, ),

(1)

where P € R™" is a symmetric and positive definite (p.d.)
matrix, I, denotes the identity matrix of order n, x' is
the transpose of x € R", and Cp, » 1S a compact set.

Given a p.d. matrix P € R™", lna(P) (Gmin(P))
denotes the maximum (minimum) eigenvalue of P.

Given a real matrix A € R™", A(A) is the set of eigen-
values (spectrum) of A;a is the maximum real part of the
eigenvalues of A, ie., a=max(real(A(A)));7=-1/a
denotes the maximum time constant of A; a>a is an
upper estimate of @; 7>7 is an upper estimate of 7.

Let A = {a;} be a real n x m matrix. |Al is its absolute
values matrix, i.e., [Al = {layl}..

Given a function f(¢), f(")(t) denotes its derivative of
v - th order.

Now, consider an uncertain LTI MIMO plant given

by

x(t) = A(p)x(t) + B(p)u(t) + E(p)d(1),

¥(t) = C(p)x(t) + D(p)d(t), (2)

where x(t) € R" is the state, u(t) € R" is the control input,
d(t) € R' is a disturbance, y(f) € R™ is the output,
p € g C R'is the vector of uncertain parameters, and
A(p), B(p), E(p), C(p), D(p) are matrices of appropriate
dimensions.

Suppose that g can be covered by a finite number
N of hyper-rectangles g ; = [pjf , pﬂ , the conditions

rank [B(p) A(p)B(p) ... A" *(p)B(p)] =n,
A(p) B(p)
cp) o
rank| " (p) AT(p)C"(p) .

rank

]:n+m,

(AT(p)"'CT (p)] =
3)

are satisfied for each p € g, and the matrices A(p), B(p),
E(p), C(p), D(p) are defined as ratios of multi-affine
matrix functions to non-zero multi-affine polynomials in

@ as
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Ail,iz,---,ivpifpizz“' b In the following, for simplicity of notation, the
Ap) = in, i, 1,€{0,1} - _c R, eX‘phClt dependency of A(p), B(p), E(p), C(p), D(p) on p
N Z o 1}ail,i2,...,i”plfpl22~~~pf,” will be omitted.
11,12, +,1,€10,
o _ Remark 1. The considered class of systems is relevant
o Z By, P1 D5 DY from the engineering point of view, since many
B(p)= ol b0 —— €R"™, mechatronic and transportation processes are
e {Osl}bihiz’“"i”p 1Pz Py described by models referable to them (see
Figure 1).
{ }Eil,iz,---,ivP?Plzz"' v
v,z 1, €{0,1
E(p)= €y i, PIDE P €R™, ) Remark 2. Note that many mechanical, electrical,
ir,ip,,i,€{0,1} mechatronic, thermal, and fluid dynamic systems
can be modeled by systems in the form
CiripiuP P2 D Li+Mx+Nu=0=X=—L 'Mx—L 'Nu=Ax+Bu,
Clp)= Bb, - RE{O1} R, where matrices L,M,N are linear with respect to
> Ciyio, P15 DY the physical system parameters, which are often
bl he(0,1} uncertain. Hence, the dependency on uncertain
D Wb parameters of the matrices A and B is of rational
ihiz’_%?e 0.1 iviz-iP1P2 Py l multi-affine type (or transformable to this by using
D(p)= 1 it b €R™. suitable changes of the parameters, as demon-
iR e{0,1} hhhPLP2 Py strated in Corollaries 1 and 2).

FIGURE 1 Some mechatronic and
transportation processes described by 2
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Remark 3. Conditions 3 imply that rank C = m < n and
rank B > m, i.e., the m outputs of the plant are
independent and the number of the independent
control inputs has to be greater or at least equal to
the number of the outputs to be controlled.

Suppose that the system 2 is controlled using a PI,
controller with a state-feedback structure as shown in
Figure 2.

From the control scheme in Figure 2, it follows that

X =Ax+Bu+Ed=(A+B(K;-K,C))x+ BKyz
+BKppz2 + -+ + BKuzy + BKpr + (E—BK,D)d,

' . 4 (5)
21=-Cx+r—-Dd,2,=21,2y =Zv-1,
e=—-Cx+r-Dd.
Therefore,
E=AE+Bor+Ecd, (6)
e:CC§+I"—Dd,
where
A+BK, BK;; -+ BKiy_1 BKyT
-C 0 0 0
Ac: 0 I 0 0 ,
) 0 - I 0 |
"BK," rE—BK,D’ [x] (7)
1 -D 21
Bc: 0 , EC: 0 ) §: 22 ’
| 0 L 0 | Zv |

K.=K,—K,C, Cc=[-C 0 0 --- 0].

The considered problem is to estimate for each p € g
the maximum time constant 7. of the closed-loop control

_ _|_ x, |
) N W
—:-'f #|—1- [ 1 'J-:__ | - :l-_\—)-l K :—'J?fl J

o e

system and the maximum norm &,y of the tracking error
e(t) of a generic reference signal r with an almost every-
where bounded derivative of order v, in the presence of a
generic disturbance d with an almost everywhere
bounded derivative of v - th order, and use 7, and €, as
parameters for the subsequent controller design. In other
words, the objective is to find:

i. a constant z. > 0 such that 7, = maxzmax(A:(p)) < 7c,
€

where Ad(p) is the dynamics pmatrix of the closed-
loop control system,

ii. non-negative constants H, and Hy, called “general-
ized gain constants”, such that, after a possible
transient phase, the tracking error satisfies the
conditions

le()] = [Ir(6) =) < émax < H,Ry + HaDy,

et dw): [+ 0] <. [a 0 <.

Remark 4. Nowadays, a generic reference signal for a
manufacturing or transportation system is a non-
standard (non-polynomial or non-sinusoidal) sig-
nal, whose derivative represents “working velocity”
or “transportation velocity”, while the second deriv-
ative represents acceleration.

In regard to the above systems, it can also be use-
ful to compute the maximum norms émax, émax of the
tracking errors eé(t) =i(¢)—y(¢t), é(t) =#(t)—-p(t)  of
i(t),7(t), since high values of ée(t) can produce high-
frequency oscillations and/or vibrations, while high
values of é(t) can produce skids (e.g., for some
transportation systems), and/or require high values of the
control action.

Remark 5. A reference signal r(¢) with a bounded v - th
derivative can be obtained by interpolating a set of
given points (&, ry), kK =0, 1, ..., n,, with appropri-
ate splines or by filtering any piecewise constant or
piecewise linear signal #(¢f) with the following
MIMO filter:

FIGURE 2
control scheme with PI, controller

Proposed state-feedback
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L=fd =faf - =f, —f,l
i r
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+ oo | =6
0 rv-1
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In this case, it is also possible to reduce the control
action, in particular, during the transient phase by suit-
ably choosing initial conditions of the filter and its cutoff
frequency.

Note that if the filter is a Bessel one with cutoff angu-
lar frequency wy, larger or equal to the angular frequency
of 7(t), then r(t) 27(t—t,),tr = v+ 1)x/(4wp).

To solve the stated problem, the following preliminar-
ies are given.

3 | THEORETICAL BACKGROUND

Definition 1. Given the system

x=f(t,x,u,p),y=Cx,t€T = [to,ty] CR,xER", u€R’,
pE C R*,yeR™,CeR™*",

a constant U > 0, and a p.d. symmetric matrix P € R™",
A positive first-order system

p=¢(p, U), po=|xollp,Y =cp, (11)

where p(t) = lIx(t)llp, such that lly(H)ll < Y(¢), for each t €
T,u:||ul|<U, and p € g, is said to be a majorant sys-
tem of the system 10.

Consider a matrix function H(p) € R™, with p = [p;
p2-p]" € g C R defined as a ratio of a multi-affine
matrix function to a multi-affine polynomial

i1 .02 "
Hi, i, P1P3 " Pu
iy, €{0,1}

H(p)= ; (12)

iy s iy
hiy iy 1,01 D5 Dy

i1k, i, €{0,1}

where Hil,iz,-“,iﬂ S RnXl and hil,iz,---,iﬂ €R.
Suppose that the compact set ¢ is a hyper-rectangle
given by

@=[p{,pf]><[pz‘,pz+]><---><[p;,p,f]=U)‘,p+], (13)

and the denominator d(p) of H(p) is different from zero
Vpe g,ie,

d@) = hil,iz,...,iﬂpillpéz' . p;f 7é 0, VP €. (14)

iy, iz, 1, €{0,1}

The following lemmas and corollaries hold (see [29,
30] for proofs).

Lemma 1. Consider a matrix H(p) (12) and a symmetric
p.d. matrix P € R™". Then, i | = n, Amax(Q(p)P™1),
peP

where Q(p) = H'(p)P+PH(p), is achieved in one of

the 2" vertices 'V, of ¢. Similarly,
Imax (H(p)PH(p) ) = Amax (H(p) "PH(p) )
pep PEV)

Corollary 1. Let
o i,
> Hipq,Pips b
i, i,€{0,1,2}

i1 4,02 b’
> i, iy, DY D5 Dy

i, i3,+,1,€{0,1,2}
nxl
Hil,iz,m,iﬂ €R , hil,iz,--»,i,, E€R,

H(p)=

(15)

be a nonsingular matrix function, defined as a ratio of a
quadratic matrix function to a quadratic polynomial with

respect to the parameters [pip,..p,)" =p € ¢ =[p~, p*l,
and P € R™" be a symmetric p.d. matrix. Then, if [ = n,

an upper estimate of Amax(Q(p)P~'), where Q(p) = H'(p)P
pep

+PH(p), is given by Amax (Qu(py)P™"), where Vy, is the set
PGVap
T
of 2% vertices of g, =X .= [Pr PPy Py
Qu(py) =HI(p,)P+ PH,(p,) and H,(p,) is obtained from
matrix H(p) by replacing p? with the product pjp,..; i = 1,2,
.pt. Similarly, an upper estimate of Amax (H" (p)PH(p)) is
pep

given by Amax (HZ (p,)PHa(p,))-
Vep

Corollary 2. Let

HilxiZ:"‘viﬂgl (ﬂ)ing(ﬂ:)iz' 8 (”)iﬂ
i1yi2,5 1, €{0,1}
H(g(n))= - . —,
hil,iz,"',iﬂgl (ﬂ)llgz(ﬂ)lz' ’ 'g}l(ﬂ")lﬂ
i1,155,1,€{0,1} (16)

B T
n€llCR 8= [gl ngﬂ:I ,Hil’iz’...’i’,ERnXl,
h

be a nonsingular matrix function, where Il is a compact set
and each function g;, i = 1,2,..,u, is continuous with respect

iy ER,

i, iy,
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to n, and P € R™" be a p.d. symmetric matrix. Then, if
I = n, an upper estimate Of Amax(Q(g(”))P_l)’ Q(g(”))
il

e

= H'(g(x))P+PH(g(n)), is given by Amax(Q(p)P

PEV)

~1), where

V), is the set of vertices of
T T
= {p ER": [mingl- . ~ming”] <p< [maxg1~ . -maxgﬂ] } (17)

Similarly, an upper estimate of Amax (H" (g(r))PH(g(x)))
is given by Amax (H' (p)PH(p)).. ™"
PEV)

Lemma 2. Let A € R™" be a matrix with v real distinct
eigenvalues A;i = 1,...,v, and p="3* distinct pairs of

complex conjugate eigenvalues ;. = an =+ jop,
h =1,...u, and let u;,i = 1,...,v, and U, = Ugy, + jupp,
h = 1,..u, be the associated eigenvectors. Then,

denoting as Z the conjugate transpose of the matrix
of the eigenvectors Z = [u... U, Ug+jup, Ugy — jUp...
Ugu+jUupulau — jup,], the matrix

-1

P=(zz")"'= lZu,u +22 Uanl gy, + UphUgy,) (18)

is always p.d. Furthermore,

Amax (Qﬁ‘1> /2=a=max(real(1(4))),  (19)

where Q=ATP + PA.

Taking Remark 2 into account, it is important to ana-
lyze uncertain LTI MIMO systems, whose matrices are
ratios of multi-affine functions with respect to the uncer-
tain parameters. Concerning this, the following lemmas
(see [29, 30] for proofs) are useful.

Lemma 3. Given the system

X(t) =A(p)x(t) + B(p)u(t) + E(p)w(t),
y(t) =C(p)x(t), (20)
pelp™, ph.]=p CR,ul <U,|w|<W,

where matrices A € R™", B R™, E ¢ R™, C ¢ R™"
are rational multi-affine with respect to the parameters
p € %, and a symmetric p.d. matrix P € R™". Then, a
majorant of 20 is given by

p=ap+bU+eW,Y =cp,p=|x|p, (21)
where

~1))/226,Q(p) = A" (p)P + PA(p),
b= max\//lmax B"(p)PB(p)) e_max\//lmax E"(p)PE(p)),
c:max\//lmax(c(p)P_lcT(P))’

a= Iglax (Amax (Q(p)P

PEV)
(22)
and V,, is the set of vertices of the hyper-rectangle g.
Lemma 4. Given the system
(1) =A(p)x(1) + G(p)r (1),
Y(t) = D1 (0).92(0), -y (8)]" = C(p)x(2), (23)

=@ CR, y(t)e[-y, y]=T CR', 7>0,

pelp™, p*]

where matrices A € R¥", G € R, C € R™" are rational
multi-affine with respect to the parameters p € g, and a
symmetric p.d. matrix P € R™". Then, some majorants of
23 are given by

C],D P= xP’.]_ 1 2 (24)

p= ap+ﬁ{ Y =cp,p=xp,

where
a=max (A (QP)P™))/2.Q(p) = AT
p=max/ 7" G" (p)PG(p)7,
Cj=max, /Cj(p)P_lch-(p),

pPEV)
1CTQJ)),

(p)P+PA(p),

¢=maxy/Amax (C(p)P

PEV)

(25)

C{(p) is the j-th row of C(p), and V), is the set of vertices of
the hyper-rectangle g.

Remark 6. Note that the majorant 21 yields an upper
estimate for evolution of the system 20 for each

t€R xo€R,pelp, ptl, u® : llu@®l < U.
w(t) : llw()ll < W.
For example, if r = — 1/a > 0, after a time equal to
4.67, an upper estimate of Ily(¢)ll is given by
()] <Y = 7c(bU + eW). (26)

Similarly, the majorants 24 yield an upper estimate
for evolution of the absolute value of each output
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y; (or liy®ll) of system 23 for each te€R,x,€R",
pelp™. pTlr() -7, 7.

Evidently, it depends on P how close this estimate
would be to the real value. An inappropriate choice of P
may result in a positive value of a, even if A(p) has all
eigenvalues with negative real parts Vp € .

If for an assigned p € g the matrix A(p) has distinct
eigenvalues (which is an easily verifiable condition), the
corresponding matrix P glven by 18 is always p.d., and
the equality 19, Amax <Q(p) )/2 max(real(1(A(p)))),
always holds, even if A(p) has some eigenvalues with
non-negative real parts.

A better estimate of the maximum absolute output
values of the system 23, but more difficult to compute,
can be obtained using the following theorem. This esti-
mate is also valid in case of uncertain matrices of non-
multi-affine type and in the presence of an additional
bounded nonlinearity y.

Theorem 1. Given the system

5(£) = A(p)x(t) + By (t,x(6),0(),p), x(0)=0

¥(1) = Co)x(1), @

wherex € R",y € R™, y(t)€[-7, yY]=T CR", y>0, v € R’
is an external signal, and A, B, C are constant matrices of
appropriate dimensions. Then,

Iy, ()] < [0|cj<p>eA<P>“B (p)I#do, (28)

where C; is the j-th row of C.

Proof. Note that the solution to the system 27 satisfies
the equation

x(t) = jeA<P><‘-’>B<p>y(m<r>,v<r>,p>dr (29)

0
t

- Je“‘@’By(t—r,X(f—T)sv(t‘f)’p)df'
0
Indeed,

Q.|Q

(e Je-A@ "B(p)y T,X(T),U(T),p)dr)

=Ae? Je APTB(p)y(r.x(z),0(z),p)de (30)

+ AP APLB(p)y (£x(1),0(t), p)

= Ax(t) + By (tx(£).0(t),p) = %(1).

WILEY_L 7

The equation 29 implies that

(o) = JZJ "Bip(t=rx(t-r)0(t—7)p)ds]| (31)

"
< Zj |CieA P By oy,

l=10

where B; is the j-th column of B, and y;, 7; are the j-th
rows of y, 7, respectively. The inequality 28 follows
from 31 and the second last introduced notation, i.e.,

{fd = {1k

4 | CONTROLLER DESIGN
This section presents the main results allowing one to
design robust controllers to track generic reference sig-
nals with an acceptable precision, despite the presence of
disturbances with bounded v-th order derivatives.

Note that

A 000 B
-C0---00 0
A= 0 I - 00]|-]0 (32)

0 0---10 0

[-K.—Ki—Kipp---—Kiy] =A¢—BoK,
where

rA O0---00
-C0--00

A= 0 I .00 ER(n+vm)><(n+vm)’ (33)
L 0O O0.--- 10
B
0

By= 0 ER(n+vm)><
LO

Hence, if (Ao, By) is reachable, it is well-known that
the eigenvalues of A, can be assigned arbitrarily for a
pre-fixed p by making a suitable choice of K, taking into
account that they are placed symmetrically with respect
to the real axis of the complex plane.

Concerning reachability of the pair (4y, By), the
following result holds.
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Theorem 2. Let A € R¥",B € R¥,C € R™" be a triple
of matrices. If

A B —-A B —-A B
rank =rank =rank =n+m (34)
co -C 0 cC 0

and (A,B) is reachable, then (Ay, By) is also reachable,
where Ay and By are defined in 33.

Proof. Given a pair of matrices (F € R**",G € R" * ). If
rank([AI-F G])=v,¥1€C, (35)

where C is the set of complex numbers, the pair (F, G) is
reachable. Hence, if

rank[Aly 4+ m—Ao Bo]=n+mv,¥ieC, (36)

(Ao, By) is reachable.
Since (by swapping some columns)

rank|[ ALy + my—Ao Bo)

[M,-—A B | 0 0 0 0]
C 0 | A, 0 0 0
— — + — — — —
—rank| O 0 | —In 0 0
|
0O 0] 0 O A, 0
L0 0 | 0 0 - —Iy A, (37
(M,-—A B | 0 0 - 0 0]
C 0 | A, 0 0 0
—rank| 00 | —=Iy AL, 0o o |
|
0 0 | 0 0 - A, O
L 0o o0 | 0 o —Ip, My, |

the relation 36 follows from the first equality of 37 and
34, if 2 = 0. Otherwise, if 1 # 0, the relation 36 follows
from the second equality of 37, taking into account that
(A,B) is reachable.
The following theorems are useful to compute
majorants of the control system.

Theorem 3. The control system 6 can also be represented
as

¢=Al +BrY) +E.dY,

(38)
e=H{, H= [Omx(n+m(v—1)) I’"]'

Proof. Upon making the change of variables

(= |:§1:| :Acé(v—l) +Bcr(v—1) +Ecd(v_1), &
2

c Rn+m(v—1)’52 c Rm’ (39)
one obtains
E=ALY + B + E.dY, (40)
From 6, it follows that
£V = ALY 4 BV 4 B dPY = ¢ (41)

Now, the first equation of 38 follows from 39, 40,
and 41.
The first equation in 6 and 39 implies that

C=AYE+ A Bor+A 2B+ -+ BV (42)
+ A Ed+ A 2Ed+ -+ Ed" 7Y,

which yields, after some manipulations, {, = e, and,
therefore, the second equation of 38.

Corollary 3. Consider the control system 6. If v = 2 then

E=AL+BarY +E.dY,

. . . (43)
F—y=e=H1{, H1 =[Omxn Im Omxml;
ify:3then
é‘:Acé‘ + Bcr(v> +Ecd<v)’
e=F=y=Hil, Hi=[Onxnem Im Omxm],  (44)

e=r-y=Hy{, Hy= [Omxn I 0m><(2m)] .
Proof. The proof follows from 40, 7, and the relations

e=Hé= H(ACC + B +Ecd(")),
. (45)
é=H,l=H, (ACC + B + Ecd<")> .

Corollary 4. Consider the control system (6). If 1(t) and
d(t) have bounded derivatives of order v+u, u > 1,
and are equal to zero for t = 0, then
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E=AL + Bt + E d0H),
" (46)
e =H( .

Proof. Denoting as F(s) = L(f(t)) the Laplace transform of
a generic function f{t), one obtains E(s) = H
(ST = A)™'s"(BR(S)}+E.D(s)).

Hence, L(e")(t)) = s"E(s) = H(sI — A.)~'s"™(B.R(s)
+E_.D(s)), and the proof follows.

The control system 38 is observable, considering the
tracking error e(t) as the output, since the following
theorem states.

Theorem 4. Ifthe pair of matrices (A € R"*",Ce R™*")
is observable, then the pair of matrices (A., H) is also
observable.

Proof. The proof readily follows by noting that

rank (A, ym—Al H'| =n+vm,¥ieC. (47)
Consider now the control system in Figure 2, where

the plant is given by 2. In view of Theorem 3, this
control system can be represented as

E=AL +BorY +E.dY,

48
e=HC, (48)
where
A 0 -+ 0 07 BT
-C0--00 0
Ac_ 0 I--00f-|0 K:A()—BQK,
L 0 0 --- 1 0] LO]
_BKP' 'E—BKPD' (49)
I -D
B.= 0 , Ec= 0 ,H= [Omx(n+m(v—1)) I],
L 0 | L 0o
K=[-K. —Ka —-Kip --- K], Ke=K;—K,C.

The following main theorem holds.

Theorem 5. Suppose that the plant 2 satisfies the condi-
tion 3 and ¢ = [p~,p*]. If p is the nominal value of
p then there exists a matrix K such that the eigen-
values of the matrix A.=A.(p) are equal to n+vm
pre-fixed symmetric values 2 of C. In addition, if
the eigenvalues yi are distinct, then, Vr(t),
d@) : 1IN < RVl < D,, a majorant of the
system 48 is given by

p=ap+bR,+e.D,, E=hcyp, (50)
with

A1
ac= maxli—ma1X (Q(p)P )

PEV) 2

be = max \/Amax (B."PB,), e.=max\/Amax(E."PE,), (52)
PEVp PEV)

o= 1 | Arma (HP_IHT),

,Q:Ac(p)Tﬁ+ﬁAc(p), (51)

. NP N
where p=||{||p, P=(ZZ , Z is the matrix of the eigen-
vectors of A, and V, being the set of vertices of the hyper-
rectangle g.

Proof. The proof follows from Lemma 1 and Theorem 3.

Remark 7. Note that if gp =p and all the eigenvalues of
A, have negative real parts, the time constant
7. = — 1/a. of the majorant system is positive and
coincides, in view of Lemma 2, with the maximum
time constant 7. of the control system.

If 7. > 0, after a transient phase whose practical
duration depends on 7., the tracking error e(t) satisfies
the relation

Jee)| <Y = Hymax|r) (]| + Homax|[d® (1)
=H,R,+H,D,, H =z:h.b,, Hyj=r1hce..

(53)

In view of Corollary 4, the i-th derivative of the
tracking error e”(¢) is given by

€0 < = Homax] e +9(0)] + Hamax|

d(””)(t)H,ViZL (54)

Alternatively, in view of Corollary 3,
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e® (1)]| < Hiymax|[r) (6)]| + Hgrmax|[d®) (1

i=1lifv=2, i=1,2ifv=3,H,; = t.hb., Hy (55)

1
=tcheiee, hei =4/ Amax (HiP HiT> .

Similar estimates of ‘egi)(t)’,j =1,..,m i=0,1,2, can
be obtained using Lemma 4, Theorems 1, 3, and Corollar-
ies 3, 4.

Remark 8. Given a reference signal r(t), the change of
variable t = 7/p yields dr/dr = d'/—/)d[, d’r/dz* = dvrpﬂ.
Hence, halving “velocity” (i.e., assuming p = 2)
makes the second derivative (“acceleration”) four
times less and reduces the maximum tracking error
accordingly. Dividing the “velocity” by three (p = 3)
makes the second derivative (“acceleration”) nine
times less, etc. Similarly, if “velocity” is halved
(p = 2), the third derivative becomes eight times
less, and the maximum tracking error is reduced
accordingly.

Remark 9. It is well-known that the proportional action
makes the control system faster and generally leads
to a reduction of the error e(f). On the other hand,
the control signal may increase due to sudden vari-
ations of r(t) and/or d(t). For example, if {, = 0,
then u(0) = K,(1(0) — Dd(0)). Hence, it is appropri-
ate to make the matrix K, bounded, |K,| <K,. Note
that once the matrix K (and, therefore, the matrix
K,) is computed, for a fixed matrix K, the relation
K. = K, — K,C implies K; = K,C+K..

If the initial state of the control system is not very
large (which can be obtained using a suitably filtered ref-
erence or using an appropriate joint reference signal
before the desired reference), the matrix K, can be cho-
sen such that for p=p the tracking error norm llell
depends on IF"*P(1)ll and not on IF(£)Il. Indeed, the fol-
lowing theorem holds.

Theorem 6. For p=p it is possible to choose a matrix
K, such that

le(t) | = 1Ir(t) = (1) | < émax <H Ry 41 +HaDy, ¥r(z), d(1)
V@) <R, [ 1) <D

(56)

Proof. For prefixed eigenvalues of A,=Ay—KB, and,
hence, of K, one obtains

E(s) =H,(s)(s"R(s)) + Ha(s)(s"D(s)),

BK,
I

Ay =1

H,(s)=H(sI-A.) Be=H(sI-A,) "

(57)

_N(s) _Ny(s)s+N,
Cdls) d(s)

Therefore, it is possible to choose K}, such that N, = 0
and then, from the relation K= [Kpé'—Ks —Ki],
to compute K and K;. Making such a choice of K, it
is E(s) = H{s)(s"R(s)) = (N1(s)/d(s))(s**'R(s)), from
which 56 follows.

»N2=NnK, + Na;.

5 | EXTENSIONS

The methodology provided in the previous sections
can be used to establish other new results. In the fol-
lowing, for brevity, only two are stated in the case
v = 1. The first result deals with the case of systems
with unmeasurable states, and the second one treats
a class of nonlinear system with additional bounded
nonlinearities.

5.1 | Observer-based controller

If the state is unmeasurable, an “observer” can be intro-
duced as in Figure 3, where

A,=A-GC,A=A(p),B=B(p),C=C(p), (58)

p is the nominal value of p and G is a design matrix.
The control scheme in Figure 3 yields

A-BK,C BK; BK,

E= -C 0 0 &
(G-BK,)C BK; A-GC +BK,
[BK, E-BK,D

+| I |r+ -D  |d=Al+B.d+Ed,
| BK, (G-BK,)D (59)
[x

E=le|,
12

e=[-C 0 0)(+r—-Dd .

Upon making the change of variables
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FIGURE 3 Control scheme with observer

&
{=1e
&

:Ac§+Bcr+Ecds é’ls CZ eRn (60)

the system 59 can be rewritten as follows:

¢ =Al + B+ Ed,

5.2 | Systems with additional bounded
nonlinearities

Consider the system

x(t) =A(p)x(t) + B(p)u(t) + Eg(x,u,d,p),
y(t) =C(p)x(t),

(64)

(61)
e=H(, H:[Omxn I, Omxn]'
where g(x,u,d,p) € R'is a bounded nonlinearity, i.e., there
Note that for p=p exists a 6 > 0 such that ligll < 6.

eig( Ac)

(10 0] '[ A-BK,C BK; BK, 10 0
=eig| (0T 0 -C 0 0 0I 0

10 -1 (G-BK,)C BK; A—GC+BK| [I 0 ~I (62)

A-B(K,C-K;) BK; -BK, o )

R A-B(K,C-K;) BK; -
= eig - 0 0 = eig i Ueig(A-GC).
. N -C
L 0 0 A-GC

Therefore, if p=p, the separation principle for eigen-
values is valid. Specifically, note that if d # 0 and/or p #
P, the observer does not provide the state of the system
and, hence, has to be considered as a dynamic compensator.

From the above considerations, the controller can be
designed by computing matrices K,G to assign prefixed
negative real-part eigenvalues to the matrices

A0

A=
"“l-co

B R L
- [O]K, K=[K,C-K; —K;], A;=A-GC

(63)
and, afterwards, optimize some performance indices of
the control system with respect to K, and the eigenvalues
OfAl,Az Vp € .

If the system 64 is controlled with the control law
z=r-y=e, u=Kx+K,e+Kz, (65)

the control system turns out to be

&: l:AtZKe B(Ifl:|§+ |:BII<p:|V+ [g:|g=Ac§+Bcr+Ec )
(66)

K.=K;—K,C,e=[-C 0]é+r=Ccl+r.

By making the change of variables
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= [gl] = Al +Ber, (67)
e
the system 66 can be rewritten as

E=Al + B+ Gog, Ge=A.KE,,

e=H{, H=[0 I]. (68)

Since the nonlinearity g is bounded, if i is also
bounded, the controller can be designed via the majorant
system approach using Lemmas 3, 4 or via input-output
(i-0) increase, applying Theorem 1 to the control system 68.

Remark 10. Clearly, the tracking error can be accept-
able using the proposed controller also if the non-
linearity g is not bounded, but bounded in a
sufficiently large neighborhood, r,i,d,p—p and the
initial state of the control system are sufficiently
bounded.

An estimate of the asymptotic practical stability
region can be determined via majorant system (see 33 in
[30]) or via randomized simulations [35].

6 | DESIGN ALGORITHMS

In this section, some algorithmic procedures to design
robust controllers are provided.

Remark 11. Once K and K, are fixed, some less conser-
vative (smaller) values of 7., H, and H,; can be
obtained using the following algorithm.

Algorithm. Step 1 Divide the set g in N hyper-rectangles
@i = [pl_, pi+] .

Step 2 Determine the majorant systems corresponding
to each hyper-rectangle ¢;, with ﬁi:%, or
equal to a close value, if cond(P;) > 1. Then,
compute the corresponding values of aq,H,; and
Hy; by (51D-(53).

Step 3 Compute a.,z.,H, and Hy by using the relations

a.=max(ag),7. = —1/a., H, =max{H,; },Hys = max{H;}.

(69)

Similar algorithms can be developed, if the majorants
of the control systems are computed using Lemma 4 and
Theorem 1 for each g, = [p;, p;* |.

Remark 12. A majorant system of the i-o type can be
obtained as an envelope of N majorant systems.

Remark 13. Since the pair (4, By) is reachable in
view of Theorem 2, the eigenvalues of A, can be
assigned arbitrarily for a fixed p. Furthermore, in
view of Theorem 4, the control system is observ-
able, considering the tracking error e(t) as output.
Hence, suitably choosing the matrices K and K,
it is possible to stabilize the control system and
optimize a quality index related to the tracking
error.

Let p be the nominal value of p. The eigenvalues of
A, =A.(p) can be chosen equal to g A, where g is a posi-
tive real optimization parameter belonging to an interval
or set Y, and A is a set of n+mv complex numbers with
negative real parts, symmetric with respect to the real
axis. A good choice of A is to consider the set of poles Ag
of a low-pass n+mv-th order Butterworth (Bessel) filter
with cutoff frequency w,, = 1, or the set of poles with real
parts equal to —1 and imaginary parts such that the
pole arguments are equal to the ones of Ap, or a set of
n+myv poles belonging to the trapezoidal region
T={i=a+jocC:ac[a,-1],|0|<|alsin{,l € (0,1)}.

Now, it is possible to design the proposed controllers
by considering certain specifications.

I. For instance, for a desired maximum error é;4, setting
e = H.R +H;D,, the design algorithm consists in
solving the min-max conditioned problem

min min max(é;—e)?, (70)
8€Y K, |Kp| <K, PEF

computing K for each fixed g with p = p,,.

This problem can be solved by using the MATLAB
commands place and fimincon (see e.g. [27]).

If é; =0 then 70 provides the controller minimizing e.
If the obtained tracking error is not satisfactory, then it is
possible to reduce the velocity of n(t) by a factor p (see
Remark 8).

II. It is also possible to design a controller solving the
min-max conditioned problem

. . . 2
min min max - 71
8€Y Kp:|Ky| <K, PEP (fea =), (71)

where 7.4 is the desired maximum time constant. Then,
compute H, and H; to obtain an estimate of the maxi-
mum value of e.
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III. Finally, it is possible to design a controller minimiz-
ing the performance index

. . A 2 A 2
min min max eg—e) +p.(ta—7 s 72
oy Kp:|Kp|sI€pP€?’( (éa—e)” +p,(Tea—7c) ) (72)

where p,, p, are suitable positive weights.

7 | EXAMPLES

Three examples are provided: the first one is theoretical
to illustrate the proposed methodology; the second and
third ones are industrial, whose objective is to demon-
strate utility and feasibility of the stated results and effec-
tiveness of the designed controller.

Example 1. Consider the plant

X=Ax+Bu+ Ed,

73
y=Cr. (73)
where
[0 1 0 10 1
A=|[10 0 ,B=101|,E=|o0],
|11 (p+1)/(3p-1) 1p 1
(200
C= ,p€[0.9,1.1] .
010
(74)

The objective is to design controllers to force the plant
73 to track sufficiently smooth reference signals with
acceptable errors. In the following, the cases v = 1 and
v = 2 are considered.

If

v=1,

1(t) 1

i'z(t) S 15 :]7,
d(t) 1.25

A ={-1.0000 =+ 3.0777i, —1.0000, —1.0000 =+ 0.7265i},

=K,,

1
Y ={0.5,0.75,1}, |K,| <
sl )

(75)

then an optimal controller (i.e., minimizing lle()Il), using
the provided Algorithm with Lemma 4, p, = 1, and
N = 20, is given by

zi=e, u=Kye+Kyzi +Kx, (76)

where

Kp

—0.8236 —0.9624 —0.2313 —-0.6441
[ } Ko = [ (77)

0.5130 —0.3026 —0.3211 0.1867

)

0.2267 0.3973 —4.0040 x
1.5732 —-0.6015 —1.0710|"

For the reference signals and disturbance shown
in Figure 4, the tracking errors obtained for
p € [0.9,1.1] with increments by 0.025 are displayed in
Figure 5.

Figure 5 shows that lle(f)ll < 5.9125, whereas using
the provided Algorithm with Lemma 4 and N = 20 yields
lle(Hll < 8.4116.

The maximum time constant 7, is numerically calcu-
lated as 7,=2.7620, whereas the estimate obtained by
using the provided Algorithm with Lemma 4 and N = 20
is equal to 7. = 2.8975. In addition, Theorem 1 implies
that

lex (£)] 3.4658 1.5173 1.7533]
= (78)

7
lea(1)] 1.3903 2.8695 1.4872

4 . ..:__;

[

L] fy - L4 v ™ bl s] 120
LU}

[k

FIGURE 4 Time histories of r1,7,,d, ifl,i'z,d, ¥1,72,d. [Color

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Time histories of e,e, using the controller 77
[Color figure can be viewed at wileyonlinelibrary.com]

If
v=2,
1(¢) 0.5
()| <] 0.5 | =7,
d(t) 0.125
A={-1+4.3813i,—1+1.2540i, — 1 £ 0.4816i, — 1},
| 11]
Y=05,|K,| < =K,,
p 11 p

(79)

then an optimal controller (i.e., minimizing lle()Il), using
the provided Algorithm with Lemma 4, p, = 1, and
N =20, is given by

Z1=e,2=21,u=Kpe+ Kz + Kipzo + Kx, (80)
where

—0.9612 —0.9946

K,= R (81)
—0.0277 —0.0296
—1.3033 —3.1828

Ky = ,
—0.9201 0.7040
—0.2459 -0.6891

Kp= )
—0.2815 0.2279

K. = 3.9798 4.5477 —8.7330
*711.0923 —0.6401 —1.0587

For the reference signals and disturbance shown in
Figure 4, the tracking errors obtained for p € [0.9,1.1]
with increments by 0.025 are displayed in Figure 6.

” |
—*
i | 'T:!
2| &1
|
1
o i e PR S R
1
|
a 1 L 1 1 1
a 20 a0 B i1} 100 1200

FIGURE 6 Time histories of e,e, using the controller 80
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 6 shows that le;(f)l < 2.5518,le()l < 3.0402,
whereas using Theorem 1 yields

max|i |
ler(£)]]  [4.1149 3.9251 1.3682 i
< max|i;| | (82)
lex(1)] 1.3028 7.9299 1.3798 .
max |d|
4.1914
= ,¥p€E[0.9,1.1].
4.7891

The maximum time constant 7, is numerically calcu-
lated as 7.=3.3675, whereas the estimate obtained by
using the provided Algorithm with Lemma 4 and N = 20
is equal to 7, = 3.5917.

Note that during the phase where #(t) =¥,(t) =0 the
tracking error is smaller. Obviously, if also d(t) =0, then
after a transient phase the tracking error is null.

Example 2. Consider a Cartesian planar robot. Assum-
ing that each activation system is an electric
DC motor, the model of each axis is of the form

2 with
[-R/L -K/L 0 1/L
A=|K/M -K,/M 0|,B=| 0 [, (83)
| 0 1 0 0
[0
E=|-1/M|,C=[0 0 1], D=0,
0

and xT=[x; x, x3]=[i v=y y]; i is measured in A, v
in cm/s, and y in cm.
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Suppose that R = 1, L = 0.010, K = 5, M = 0.50,
K, = p €[0.40,0.60].
If

v=1,
ii(t) 1.2

. =7,

d(t) 0 (84)
A={—-142.4142i, -1+ 0.4142i},

<

>

then an optimal controller (i.e., minimizing lle()Il), using
the provided Algorithm with Lemma 4, p, = 0.5, and
N =4, is given by

Zl =e,u :er + K121 + Kgx = 2.40e

(85)
+80.00z; +[0.610 3.839 —13.60]x.

Suppose that the robot's task is to cut the metal ring
in Figure 7 from a metal sheet by using a laser beam with
a constant cutting velocity in 120s.

Figure 8 displays the smoothed reference signals
r, = ryand r, = r, reported with the corresponding veloci-
ties and accelerations, which are obtained by using two
third-order single-input single-output (SISO) Bessel filters
with w, = 5rad/s (initial conditions [r,(0) 0 0]7, i = 1,2)
from the initial piecewise-linear references obtained by
linearly interpolating a finite number of points.

Assuming that the reference signals are the ones in
Figure 8 and the disturbance is absent, the tracking
errors are displayed in Figure 9, while the control volt-
ages are shown in Figure 10. Figure 11 displays the
obtained metal ring.

The maximum time constant 7, is numerically calcu-
lated as 7,=0.1019, whereas the estimate provided by

LE]
llhll_

FIGURE 7
wileyonlinelibrary.com]

Desired metal ring [Color figure can be viewed at
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FIGURE 8 Time histories of r,r,, 1,72, #1,7,. [Color figure
can be viewed at wileyonlinelibrary.com]|

using the provided Algorithm with Lemma 4 and N = 4
is equal to 7, = 0.1026.
Using Theorem 1 yields

lei(1)] <
(86)
If
v=2,
Fi(t) - 34|
aw | 0]_% (87)
A={-1+3.0777i,—1,—-1+0.7265},
L — | — —
fh | F |l 8,
:||5.! |I| | | | “Ir ‘h I'.I.i |p .
s EC I ‘ T
| | | |,| l | I|I I
oSy | | i I Kl |
n:l ! Iﬂ! [ lI:i ||| | | |I. ‘ ||
el || |[‘|" ‘ I Lli'l '
[ | [ [ |
aapl | |x| {, l>|| | !|
A VG | RN
I UMY L
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n a0 41 &l & 100 M

FIGURE 9 Time histories of e,e, obtained with the controller
85 [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Time histories of control voltages [Color figure
can be viewed at wileyonlinelibrary.com|

then an optimal controller (i.e., minimizing lle(¢)Il) using
the provided Algorithm with Lemma 4, p, = 0.5, and
N =4, is given by

21=e, =21, u=Kpe+Knz1 + Kz + Ksx

=8.90e + 400.00z; + 1600.00z; + [0.510 3.049 —31.100]x.

(88)

Assuming that the references are shown in Figure 8
and the disturbance is absent, the tracking errors are
displayed in Figure 12.

FIGURE 11
at wileyonlinelibrary.com]

Obtained metal ring [Color figure can be viewed
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FIGURE 12 Time histories of e,e, using the controller 88
(v = 2). [Color figure can be viewed at wileyonlinelibrary.com]

The maximum time constant 7, is numerically calcu-
lated as 7, =0.1020, whereas the estimate provided by
using the provided Algorithm with Lemma 4 and N = 4
is equal to 7. = 0.1031.

Using Theorem 1 yields

le;(t)] <0.0194max|F;| + 6.1263¢— 5max|d|, Vp € [0.4,0.6].
(89)

If the cutting velocity is halved (Figure 13), then
the tracking errors for the controller 85 (v = 1) and the

If . S

.-’._F o -, :!!F

i S — = - 3
=l

l."-'f _..-""., - |II r |‘| |'| ~L"|l"" '1 Ii B :ii

/Y "“"'” R 'JJ *’,-_, el

s = = + . 1]
=

o | -

Ls*b"'.ﬁf"*\,»- @]ﬁ- ;;]J,ruh. _lr.fill L "':“'

||'- 5!\_ % e )
i

FIGURE 13 Time histories of ry,r,, 71,7, 71,7, with a halved
cutting velocity [Color figure can be viewed at wileyonlinelibrary.
com]
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FIGURE 14 Time histories of ey,e, for controller 85 with a
halved cutting velocity (v = 1). [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 15 Time histories of e;,e, for controller 88 with a
halved cutting velocity [Color figure can be viewed at
wileyonlinelibrary.com]

ones for the controller 88 (v = 2) are reported in
Figures 14 and 15, respectively. Note that the obtained
errors are respectively the half and one-fourth of those
in the previous case, in accordance with Remark 8.
Clearly, upon reducing the velocity and acceleration,
the control signal also decreases, as well as the motor
power.

To reduce the tracking errors or increase the cutting
velocity without reducing the errors, it is possible to
increase the size of the optimization parameter set Y.
However, this approach may result in higher control
signals.

FIGURE 16 Milling machine [Color figure can be viewed at
wileyonlinelibrary.com]|

FIGURE 17 Handling robot of the milling cutter [Color
figure can be viewed at wileyonlinelibrary.com]

Example 3. Consider a milling machine composed of a
Cartesian conveyor to move the working table
along the directions X - Y and a planar robot with
rotoidal joints to move the milling cutter C (see
Figures 16 and 17).

The robot model is given by
M(B,)B+Kof+C(f,,) =u+d, (90)

where g=[p, f,)".u=[u; w]", andd=1[d; d,]" is the
vector of disturbance torques due to interaction of the
milling cutter with a workpiece. If the working area is
sufficiently bounded, the controller can be designed using
the linearized model of the robot.

Under the hypothesis that
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L, =0.6m,m; = 6Kg/m,M; =0.5Kg, I, = 0.01Kgm?,
L, =0.6m,m, = 5Kg/m,M, = 0.5Kg,I, = 0.02Kgm?, (91)
K, =diag([0.20.1]),

the linearized model around the operating point
B.=|-xn/4 z/2])", u.=0,and d, = 0 s given by

[lext| |ey1|] <[0.5156 0.4827]mm, [|ea| |e)2|] <[0.2904 0.2742]mm,
[lexs| |ey3|] <[0.2112 0.2043]mm, [|es| |eya|] <[9.1255 36.5622]mm.

[0 0 1 0 0 0
00 0 1 0 0
x= x+ u
0 0 —0.1063 0.1063 0.5313 —0.5313
|10 0 0.1063 -0.4634 —-0.5313 2.3171
i 0 0
0 0 (92)
+ d,
—0.4243 0.4243
0 0.8485
0 —-0.4243 0 O
y= X
10.8485 0.4243 0 0
where
X =f—Peu=[u; u]",d=Flcosa sina]", (93)
T
y=XY]" -y, y,= [0.6\/5 0} .
If

A ={-3+11.1962i, —3.0000 £ 3.0000i, —3.0000 -+ 0.8038i},

(94)

the controller designed using Theorem 5 takes the form

u:er+Kijedr+Ks [ﬂ_.ﬁe]

F (95)

:er+KiJedr+K/j,B,e: r—y,

where

—289.8144 122.9067 —576.0291 251.4648
K,= , K= >
b —146.5444 3.2447 —290.2232 8.1366
0 0 —16.3490 —28.9928
K= [K/j Kﬁ’] = .
00 —-0.2071 -10.4696

(96)

Remark 14. Note that the designed controller is easy to
realize, since it does not require the measurement
of g (being K; = 0), and the measurement of e can
be obtained with a robot camera if the reference r
is depicted on the workpiece. Moreover, this con-
troller is also robust against the measurement
noises, due to the integral action included in the
control law 95, and the fact that the reaction of the
joints' velocity is inside of the control cycle which
uses the tracking error.

Now, suppose that the goal is to cut the elliptic
windows (see Figure 18).

Iy = a;cos(8(it,)), ry = bisin(3(it,)),

(97)
a;=7.5icm, b;=>5icm, i=1,2,3,4,
with the time history of d(¢,) shown in Figure 19.
Assuming that the cutting force is equal to

F = —ny,n=15Ns/m, the tracking error bounds are given
by

(98)

dlr =

nAe | T e

FIGURE 18 Elliptic windows
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Using the designed controller with The time histories of r,,ry, tracking errors e,e,, and
A ={-4 £+i14.9282, -4 + i4,—4 + i 1.0718}, the tracking control torques u,,u, are reported for i = 2 and controller
error bounds are reduced to 95, 96 in Figure 20.

[ext| |ey|] <[0.2545 0.1889]mm, [|exz] |ey2|] <[0.1412 0.1062]mm,
[exa] |eys|] <[0.1018 0.0788]mm, [|exs| |eya|] <[0.0796 0.0617]mm.

. ] . Finally, for i = 2 and the controller 95, 96, if ﬂ
| i is affected by a measurement noise uniformly distributed

5 0 15 3 s 35 40 4 in the interval [nf,n*]:[—2e‘3,2e‘3]rad/s (6.7%

ﬂl ﬁi
of max{max|B,|,max|$, }) and y is affected by a measure-
ment noise uniformly distributed in the interval

M S Y [ny‘i,n;:] =[-0.2,0.2]mm , the tracking errors eye, and

v control torques u,,u, are shown in Figure 21.

FIGURE 20 Time histories of r,e,u. [Color figure can be FIGURE 21 Time histories of r,e,u with ﬁ and y affected by
viewed at wileyonlinelibrary.com] noises [Color figure can be viewed at wileyonlinelibrary.com]
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8 | CONCLUSIONS

In this paper, a broad class of LTI uncertain MIMO
systems with bounded parametric uncertainties and/or
affected by disturbances with bounded derivatives of
order v has been considered. The tracking problem has
been systematically presented for generic sufficiently
smooth reference signals, for instance, with bounded
v-th order derivatives. The employed majorant systems
approach results in designing the state-feedback
proportional-integral controllers of order v. The case of
systems with additional bounded nonlinearities and/or
not directly measurable states has been studied as well.

The main advantages of the obtained results can be
summarized as follows:

« uncertain LTI MIMO plants are considered generic;

« reference signals and/or disturbances are considered
generic, with bounded v - th order derivatives

« the obtained results allow one to systematically design
robust controllers for tracking generic reference signals
with an acceptable precision, despite the presence of
measurement noises;

« the proposed controllers avoid the derivative action
causing realization problems, especially in the pres-
ence of measurement noises.

Finally, the obtained results have been validated by
three examples: the first one is given to illustrate the
proposed methodology, whereas the second and third
examples deal with a metal-cutting problem for an indus-
trial robot and a composite robot, such as a milling
machine, to show practical advantages and effectiveness
of the designed controller.

The ongoing research is conducted on extending the
above results to some classes of uncertain LTI MIMO
processes and/or other types of controllers, to design
robust control laws guaranteeing pre-fixed maximum
tracking errors, considering also the physical constraints
of the control signals.
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